channel coding - определение. Что такое channel coding
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое channel coding - определение

SCHEME FOR CONTROLLING ERRORS IN DATA OVER NOISY COMMUNICATION CHANNELS
Error-correcting code; Forward error correction; Error correcting code; Error correcting codes; Channel coding; Forward Error Correction; Error Correcting Code; Interleaver; Error correction codes; Channel Coding; Error-correcting codes; Bit-interleaving; Forward error correction code; Forward error correction codes; Error correction coding; Error correcting coding; Error-correcting coding; Bit interleaving; Error-correction code; Error-correction coding; FEC code; Forward error recovery; List of error-correcting codes
  • A block code (specifically a [[Hamming code]]) where redundant bits are added as a block to the end of the initial message
  • A continuous code [[convolutional code]] where redundant bits are added continuously into the structure of the code word
  • A short illustration of interleaving idea

Noisy-channel coding theorem         
LIMIT ON DATA TRANSFER RATE
Shannon limit; Shannon Limit; Shannon's Theorem; Shannon's theorem; Fundamental theorem of information theory; Noisy channel; Shannon theorem; Noisy channel coding theorem; Shannon s theorem; Shannon's noisy channel theorem; Shannon's noisy coding theorem; Channel coding theorem; Shannon's second theorem
In information theory, the noisy-channel coding theorem (sometimes Shannon's theorem or Shannon's limit), establishes that for any given degree of noise contamination of a communication channel, it is possible to communicate discrete data (digital information) nearly error-free up to a computable maximum rate through the channel. This result was presented by Claude Shannon in 1948 and was based in part on earlier work and ideas of Harry Nyquist and Ralph Hartley.
Joint source and channel coding         
PERFORMING SOURCE CODING AND CHANNEL CODING IN A SINGLE OPERATION
In information theory, joint source–channel coding is the encoding of a redundant information source for transmission over a noisy channel, and the corresponding decoding, using a single code instead of the more conventional steps of source coding followed by channel coding.
Coding region         
  • '''Transcription''': RNA Polymerase (RNAP) uses a template DNA strand and begins coding at the promoter sequence (green) and ends at the terminator sequence (red) in order to encompass the entire coding region into the pre-mRNA (teal). The pre-mRNA is polymerised 5' to 3' and the template DNA read 3' to 5'
  • Karyotype}}
  • An electron-micrograph of DNA strands decorated by hundreds of RNAP molecules too small to be resolved. Each RNAP is transcribing an RNA strand, which can be seen branching off from the DNA. "Begin" indicates the 3' end of the DNA, where RNAP initiates transcription; "End" indicates the 5' end, where the longer RNA molecules are completely transcribed.
  • '''Point mutation types:''' transitions (blue) are elevated compared to transversions (red) in GC-rich coding regions.
PORTION OF A GENE'S DNA OR RNA, COMPOSED OF EXONS, THAT CODES FOR PROTEIN; COMPOSED OF CODONS, WHICH ARE DECODED, TRANSLATED INTO PROTEINS BY THE RIBOSOME; BEGINS WITH THE START CODON AND END WITH A STOP CODON
Coding sequence; Coding regions; Coding DNA sequence; Protein coding region; Protein coding sequence; Gene coding; Coding DNA; Protein-coding
The coding region of a gene, also known as the coding sequence (CDS), is the portion of a gene's DNA or RNA that codes for protein. Studying the length, composition, regulation, splicing, structures, and functions of coding regions compared to non-coding regions over different species and time periods can provide a significant amount of important information regarding gene organization and evolution of prokaryotes and eukaryotes.

Википедия

Error correction code

In computing, telecommunication, information theory, and coding theory, forward error correction (FEC) or channel coding is a technique used for controlling errors in data transmission over unreliable or noisy communication channels.

The central idea is that the sender encodes the message in a redundant way, most often by using an error correction code or error correcting code, (ECC). The redundancy allows the receiver not only to detect errors that may occur anywhere in the message, but often to correct a limited number of errors. Therefore a reverse channel to request re-transmission may not be needed. The cost is a fixed, higher forward channel bandwidth.

The American mathematician Richard Hamming pioneered this field in the 1940s and invented the first error-correcting code in 1950: the Hamming (7,4) code.

FEC can be applied in situations where re-transmissions are costly or impossible, such as one-way communication links or when transmitting to multiple receivers in multicast. Long-latency connections also benefit; in the case of a satellite orbiting Uranus, retransmission due to errors can create a delay of five hours. FEC is widely used in modems and in cellular networks, as well.

FEC processing in a receiver may be applied to a digital bit stream or in the demodulation of a digitally modulated carrier. For the latter, FEC is an integral part of the initial analog-to-digital conversion in the receiver. The Viterbi decoder implements a soft-decision algorithm to demodulate digital data from an analog signal corrupted by noise. Many FEC decoders can also generate a bit-error rate (BER) signal which can be used as feedback to fine-tune the analog receiving electronics.

FEC information is added to mass storage (magnetic, optical and solid state/flash based) devices to enable recovery of corrupted data, and is used as ECC computer memory on systems that require special provisions for reliability.

The maximum proportion of errors or missing bits that can be corrected is determined by the design of the ECC, so different forward error correcting codes are suitable for different conditions. In general, a stronger code induces more redundancy that needs to be transmitted using the available bandwidth, which reduces the effective bit-rate while improving the received effective signal-to-noise ratio. The noisy-channel coding theorem of Claude Shannon can be used to compute the maximum achievable communication bandwidth for a given maximum acceptable error probability. This establishes bounds on the theoretical maximum information transfer rate of a channel with some given base noise level. However, the proof is not constructive, and hence gives no insight of how to build a capacity achieving code. After years of research, some advanced FEC systems like polar code come very close to the theoretical maximum given by the Shannon channel capacity under the hypothesis of an infinite length frame.